ACSL1 Aggravates Thromboinflammation by LPC/LPA Metabolic Axis in Hyperlipidemia Associated Myocardial Ischemia-Reperfusion Injury.

ACSL1 通过 LPC/LPA 代谢轴加剧高脂血症相关心肌缺血再灌注损伤中的血栓炎症

阅读:3
作者:Jiang Shuai, Lin Xueguang, Chen Bo, Chen Gang, Kwan Kristine J S, Liu Jing, Sun Qi, Wang Jie, Lu Yijie, Tong Jindong, Deng Ying, Yu Bo, Tang Jingdong
Acute myocardial infarction (AMI) is associated with well-established metabolic risk factors, especially hyperlipidemia and obesity. Myocardial ischemia-reperfusion injury (mIRI) significantly offsets the therapeutic efficacy of revascularization. Previous studies indicated that disrupted lipid homeostasis can lead to lipid peroxidation damage and inflammation, yet the underlying mechanisms remain unclear. Here, the study demonstrates that hyperlipidemia is a key driver of mIRI. Long-chain fatty acyl-CoA synthetase 1 (ACSL1) is upregulated in both hyperlipidemia and AMI patients. ACSL1 expression is induced by a high-fat microenvironment (oxLDL and palmitic acid) in a concentration-dependent manner. Interestingly, the protein level is positively correlated with total cholesterol level and thromboinflammatory biomarkers. Furthermore, ACSL1 reprogrammed lipid metabolism in monocytes, leading to the accumulation of lysophosphatidylcholine (LPC)/lysophosphatidic acid (LPA). The monocytic LPC/LPA axis accelerated lipid peroxidation and neutrophil extracellular traps (NETs)-induced thromboinflammation via the paracrine effect. The main LPA producer Autotaxinis is also induced under high-fat conditions and then exerts thromboinflammation response through converted LPC to LPA. Finally, ACSL1 knockdown or NETs release inhibitor (DNase I or GSK484) significantly alleviated mIRI in mice. These findings highlight ACSL1 and NETosis as potential key targets for preventing mIRI and underscore the lipid peroxidation in the mechanisms of ACSL1-mediated thromboinflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。