Diabetic wounds (DW) represent a significant clinical challenge due to chronic inflammation, excessive oxidative stress, and impaired angiogenesis, all of which hinder effective tissue regeneration. Existing drug delivery systems often fail to achieve sustained and targeted therapeutic efficacy. In this study, we developed a novel dissolvable dual-layer methacrylated gelatin (GelMA) microneedle (MN) co-loading selenium-doped carbon quantum dots (Se-CQDs) and Astilbin (AST) for enhanced DW treatment. The outer layer, enriched with Se-CQDs, rapidly scavenges reactive oxygen species (ROS), effectively alleviating oxidative stress at the wound site. Sequentially, the inner layer releases AST, exerting potent anti-inflammatory and pro-angiogenic effects. Preliminary findings suggest these effects may involve the modulation of cytoskeletal dynamics and peroxisome function, contributing to endothelial cell migration and angiogenesis. This controlled, sequential release MN establishes a low-oxidative, anti-inflammatory microenvironment, thereby promoting angiogenesis and accelerating wound repair. The pioneering integration of selenium-doped quantum dots and AST-loaded hydrogels offers a synergistic therapeutic strategy, setting a new standard for advanced diabetic wound care with substantial clinical promise.
Multifunctional dual-layer microneedles loaded with selenium-doped carbon quantum dots and Astilbin for ameliorating diabetic wound healing.
载有硒掺杂碳量子点和阿斯替宾的多功能双层微针,用于改善糖尿病伤口愈合
阅读:3
作者:Zhang Zhen, Zhang Yulin, Peng Liang, Xing Yi, Zhou Xinru, Zheng Shuo, Zhang Yanli, Shao Longquan
| 期刊: | Materials Today Bio | 影响因子: | 10.200 |
| 时间: | 2025 | 起止号: | 2025 Apr 10; 32:101739 |
| doi: | 10.1016/j.mtbio.2025.101739 | 研究方向: | 代谢 |
| 疾病类型: | 糖尿病 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
