Network Pharmacology and Experimental Validation Identify Paeoniflorin as a Novel SRC-Targeted Therapy for Castration-Resistant Prostate Cancer.

网络药理学和实验验证确定芍药苷是一种新型的 SRC 靶向疗法,用于治疗去势抵抗性前列腺癌

阅读:7
作者:Xu Meng-Yao, Zhang Jun-Biao, Peng Yu-Zheng, Liu Mei-Cheng, Ma Si-Yang, Zhou Ye, Wang Zhi-Hua, Ma Sheng
Background: Despite advances in prostate cancer treatment, castration-resistant prostate cancer (CRPC) remains clinically challenging due to inherent therapy resistance and a lack of durable alternatives. Although traditional Chinese medicine offers untapped potential, the therapeutic role of paeoniflorin (Pae), a bioactive compound derived from Paeonia lactiflora, in prostate cancer has yet to be investigated. Methods: Using an integrative approach (network pharmacology, molecular docking, and experimental validation), we identified Pae key targets, constructed protein-protein interaction networks, and performed GO/KEGG pathway analyses. A Pae-target-based prognostic model was developed and validated. In vitro and in vivo assays assessed Pae effects on proliferation, migration, invasion, apoptosis, and tumor growth. Results: Pae exhibited potent anti-CRPC activity, inhibiting cell proliferation by 60% and impairing cell migration by 65% compared to controls. Mechanistically, Pae downregulated SRC proto-oncogene, non-receptor tyrosine kinase (SRC) mRNA expression by 68%. The Pae-target-based prognostic model stratified patients into high- and low-risk groups with distinct survival outcomes. Organoid and xenograft studies confirmed Pae-mediated tumor growth inhibition and SRC downregulation. Conclusions: Pae overcomes CRPC resistance by targeting SRC-mediated pathways, presenting a promising therapeutic strategy. Our findings underscore the utility of network pharmacology-guided drug discovery and advocate for further clinical exploration of Pae in precision oncology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。