Synergistic Inhibition of Nav1.7 and NCX1: A Novel Strategy for Treating Cancer-Induced Bone Pain by Modulating Pain Sensitization and Neuronal Inflammation.

协同抑制 Nav1.7 和 NCX1:通过调节疼痛敏化和神经元炎症治疗癌症引起的骨痛的新策略

阅读:12
作者:Feng Yan, Yan Fang, Chen Dongtai, Wang Peizong, Yan Yan, Chen Xiangnan, Li Qiang, Xing Wei, Zeng Weian, Huang Yang
AIMS: Cancer-induced bone pain (CIBP) is a chronic and refractory pain condition characterized by neuronal hyperexcitability, calcium dysregulation, and neuroinflammation. Voltage-gated sodium channels (VGSCs) and sodium/calcium exchangers (NCXs) are crucial in regulating sensory neuron sodium-calcium homeostasis, influencing nociceptive signaling and neuroinflammatory responses. This study focused on exploring how Nav1.7 from the VGSC family and NCX1 from the NCX family influence nociceptive signaling and neuroinflammation in CIBP. METHODS: CIBP was induced in mice. Nav1.7 and NCX1 expression and colocalization in DRG neurons were analyzed by qPCR, western blotting, and immunofluorescence. Calcium overload and neuronal excitability were assessed using calcium imaging and electrophysiological recordings. Neuroinflammation markers were detected by qPCR and western blotting. RESULTS: Among the VGSC and NCX subtypes, Nav1.7 and NCX1 were notably upregulated and colocalized in the DRG neurons of CIBP mice. Combined inhibition of these channels demonstrated a synergistic analgesic effect and markedly reduced neuronal calcium overload and hyperexcitability. Furthermore, the combined inhibition substantially alleviated neuroinflammation by inhibiting the p38 MAPK/NF-κB pathway and lowering proinflammatory cytokine levels. CONCLUSIONS: The combined inhibition of Nav1.7 and NCX1 enhances analgesic effects and reduces neuroinflammation, presenting a potential therapeutic approach for CIBP and other cancer-associated pain disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。