Lactoferrin combined with Coenzyme Q10 ameliorate sarcopenia in an aging mouse model induced by D-galactose.

乳铁蛋白与辅酶 Q10 联合使用可改善 D-半乳糖诱导的衰老小鼠模型中的肌肉减少症

阅读:4
作者:Wu Wenbin, Zhu Yinhua, Fu Yanan, Xing Hongfei, Guo Xinlu, Xu Jichao, Hu Wenhui, Cui Mingyang, Shi Jiaxin, Li Ling, Wang Weiwei, An Peng, Luo Yongting, Luo Junjie, Xing Qingchang
Sarcopenia is an age-related condition with a slow and prolonged decrease in muscular mass, strength, and function. As the population ages, the frequency of sarcopenia rises, and aggressive prevention methods and effective treatment options are in urgent need. Here, we explore the hypothesis that nutritional interventions can ameliorate skeletal muscle aging in mice affected by sarcopenia, and the aforementioned hypothesis was validated through histopathological characterization and behavioral experiments. The model group exhibited reduced muscle mass (Lean Mass, GAS Index), muscular strength (Maximum Limb Muscle Strength), and muscular function (Exhaustion Time, Inverted Grid Time), along with increased fat content and smaller myofiber size compared to the control group. Treatments with lactoferrin and CoQ10, both individually and in combination, enhanced muscle indices and facilitated muscle tissue regeneration, with the combined treatment showing the most significant improvement. Research further shows that Lactoferrin and CoQ10, whether administered alone or in combination, were discovered to restrain the progression of sarcopenia by inhibiting both protein metabolism and mitochondrial energy metabolism, and compared to groups treated with lactoferrin or CoQ10 alone, the combined treatment demonstrated varying degrees of improvement across all evaluated metrics, such as Lean Mass (2.273 ~ 5.365%), Fat Mass (-1.058 ~ -0.359%), GAS index (0.259 ~ 0.335%), Maximum Limb Muscle Strength (6.83 ~ 53.498 g), Inverted Grid Time (563 ~ 859 s), Exhaustion Time (386 ~ 468 s).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。