Transcriptome Sequencing Reveals the Molecular Mechanism of Heat Stroke-Induced Myocardial Injury.

转录组测序揭示了中暑诱发心肌损伤的分子机制

阅读:4
作者:Xiang Jie, Shao Shijie, Huang Jie, Yang Na, Guo Fei, Tang Baopeng, Zhang Ling
BACKGROUND: The annual rise of global temperature and the continuous occurrence of extremely high temperatures in summer have significantly increased the incidence of heat stroke (HS), which has caused serious burden on the cardiovascular system. The purpose of this study was to investigate the potential mechanisms of heat stroke-induced myocardial injury via transcriptome sequencing. METHODS: HS models of rat and H9C2 cells were constructed and transcriptomic sequencing was performed. Bioinformatics methods were used to analyze transcriptomics to reveal the pathophysiological mechanism of HS-induced myocardial injury. Subsequently, machine learning was utilized to identify key targets of HS-induced myocardial injury. Finally, experiments such as Western blotting, flow cytometry and immunofluorescence were used to validate in vivo and in vitro. RESULTS: HS rats exhibited severe cardiac dysfunction. Transcriptomics revealed that HS-induced myocardial injury mainly involved apoptosis and inflammation. Meanwhile, there were significant differences in the expression of mitochondria-related genes, which were significantly enriched in the apoptosis pathway. Through machine learning, Jun was identified as a key target for HS-induced myocardial injury. In HS rat myocardial tissue, mitochondrial structure was severely disrupted, and Jun protein expression and cardiomyocyte apoptosis were significantly increased. In cell experiments, inhibition of Jun expression with Jun inhibitors (SR11302) significantly improved mitochondrial membrane potential and reduced cell apoptosis. CONCLUSION: Our findings suggested that Jun-mediated mitochondrial apoptosis plays an important role in HS-induced myocardial injury, which provides a new preventive and therapeutic target for HS-induced myocardial injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。