Early oxidative shifts in mouse skeletal muscle morphology with high-fat diet consumption do not lead to functional improvements

高脂饮食导致小鼠骨骼肌形态早期氧化转变不会导致功能改善

阅读:5
作者:Melissa M Thomas, Karin E Trajcevski, Samantha K Coleman, Maggie Jiang, Joseph Di Michele, Hayley M O'Neill, James S Lally, Gregory R Steinberg, Thomas J Hawke

Abstract

Short-term consumption of a high-fat diet (HFD) can result in an oxidative shift in adult skeletal muscle. However, the impact of HFD on young, growing muscle is largely unknown. Thus, 4-week-old mice were randomly divided into sedentary HFD (60% kcal from fat), sedentary standard chow (control), or exercise-trained standard chow. Tibialis anterior (TA) and soleus muscles were examined for morphological and functional changes after 3 weeks. HFD consumption increased body and epididymal fat mass and induced whole body glucose intolerance versus control mice. Compared to controls, both HFD and exercise-trained TA muscles displayed a greater proportion of oxidative fibers and a trend for an increased succinate dehydrogenase (SDH) content. The soleus also displayed an oxidative shift with increased SDH content in HFD mice. Despite the aforementioned changes, palmitate oxidation rates were not different between groups. To determine if the adaptive changes with HFD manifest as a functional improvement, all groups performed pre- and postexperiment aerobic exercise tests. As expected, exercise-trained mice improved significantly compared to controls, however, no improvement was observed in HFD mice. Interestingly, capillary density was lower in HFD muscles; a finding which may contribute to the lack of functional differences seen with HFD despite the oxidative shift in skeletal muscle morphology. Taken together, our data demonstrate that young, growing muscle exhibits early oxidative shifts in response to a HFD, but these changes do not translate to functional benefits in palmitate oxidation, muscle fatigue resistance, or whole body exercise capacity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。