L-type Ca2+ channel sparklets revealed by TIRF microscopy in mouse urinary bladder smooth muscle

TIRF 显微镜显示小鼠膀胱平滑肌中的 L 型 Ca2+ 通道小泡

阅读:9
作者:Peter Sidaway, Noriyoshi Teramoto

Abstract

Calcium is a ubiquitous second messenger in urinary bladder smooth muscle (UBSM). In this study, small discrete elevations of intracellular Ca(2+), referred to as Ca(2+) sparklets have been detected in an intact detrusor smooth muscle electrical syncytium using a TIRF microscopy Ca(2+) imaging approach. Sparklets were virtually abolished by the removal of extracellular Ca(2+) (0.035 ± 0.01 vs. 0.23 ± 0.07 Hz/mm(2); P<0.05). Co-loading of smooth muscle strips with the slow Ca(2+) chelator EGTA-AM (10 mM) confirmed that Ca(2+) sparklets are restricted to the cell membrane. Ca(2+) sparklets were inhibited by the calcium channel inhibitors R-(+)-Bay K 8644 (1 μM) (0.034 ± 0.02 vs. 0.21 ± 0.08 Hz/mm(2); P<0.05), and diltiazem (10 μM) (0.097 ± 0.04 vs. 0.16 ± 0.06 Hz/mm(2); P<0.05). Ca(2+) sparklets were unaffected by inhibition of P2X1 receptors α,β-meATP (10 μM) whilst sparklet frequencies were significantly reduced by atropine (1 μM). Ca(2+) sparklet frequency was significantly reduced by PKC inhibition with Gö6976 (100 nM) (0.030 ± 0.01 vs. 0.30 ± 0.1 Hz/mm(2); P<0.05), demonstrating that Ca(2+) sparklets are PKC dependant. In the presence of CPA (10 μM), there was no apparent change in the overall frequency of Ca(2+) sparklets, although the sparklet frequencies of each UBSM became statistically independent of each other (Spearman's rank correlation 0.2, P>0.05), implying that Ca(2+) store mediated signals regulate Ca(2+) sparklets. Under control conditions, inhibition of store operated Ca(2+) entry using ML-9 (100 μM) had no significant effect. Amplitudes of Ca(2+) sparklets were unaffected by any agonists or antagonists, suggesting that these signals are quantal events arising from activation of a single channel, or complex of channels. The effects of CPA and ML-9 suggest that Ca(2+) sparklets regulate events in the cell membrane, and contribute to cytosolic and sarcoplasmic Ca(2+) concentrations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。