OBJECTIVE: Screen for differential proteins in the cochlea of mice associated with Age-Related Hearing Loss (ARHL), analyze and validate the expression of specific differential proteins and genes in the cochlea and auditory cortex of ARHL mice, and preliminarily explore their potential mechanisms of action. METHODS: ABR (Auditory Brainstem Response) hearing tests were conducted to select 15-month-old C57BL/6 mice with significantly decreased hearing as the experimental group and 2-month-old mice with normal hearing as the control group. Cochleae were dissected, and unlabeled quantitative proteomics was employed to identify and analyze differentially expressed proteins in the inner ear of the two groups of mice. Key node proteins were selected via the STRING database and Cytoscape analysis. The expression of two selected proteins, ApoE and Spp1, in the cochlea was detected using qRT-PCR, Western blot, and immunofluorescence techniques, and their expression in the auditory cortex of the brain was further explored. RESULTS: Label-free quantitative proteomics identified 115 differentially expressed proteins in the cochlea of 15-month-old ARHL mice compared to 2-month-old hearing-normal mice, including 42 upregulated and 73 downregulated proteins. GO and KEGG enrichment analyses revealed significant enrichment of differentially expressed proteins in functions and signaling pathways associated with neurodegenerative diseases and neurotransmission. Protein-Protein Interaction (PPI) analysis using the STRING database and Cytoscape selection identified ApoE and Spp1 as key hub proteins. Validation via qRT-PCR, Western blot, and immunofluorescence demonstrated that both ApoE and Spp1 were highly expressed in the cochlea and auditory cortex of the ARHL mice compare to 2-month-old hearing-normal mice. CONCLUSION: ApoE and Spp1 are upregulated in the cochlea of ARHL mice, particularly in spiral ganglion neurons, and in the auditory cortex, suggesting their potential involvement in the pathogenesis and progression of ARHL through the modulation of auditory neural conduction systems. LEVEL OF EVIDENCE: Level 2.
Expression of ApoE and Spp1 in the cochlea and auditory cortex of age-related hearing loss mice.
年龄相关性听力损失小鼠耳蜗和听觉皮层中 ApoE 和 Spp1 的表达
阅读:24
作者:Yuan Yingxue, Zhang Junhong, Zhao Jingyi, Zhang Xiru, Cao Zhixin
| 期刊: | Brazilian Journal of Otorhinolaryngology | 影响因子: | 1.800 |
| 时间: | 2025 | 起止号: | 2025 Jul 9; 91(6):101674 |
| doi: | 10.1016/j.bjorl.2025.101674 | 研究方向: | 其它 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
