Fraxin Alleviates Atherosclerosis by Inhibiting Oxidative Stress and Inflammatory Responses via the TLR4/PI3K/Akt Pathway.

Fraxin 通过 TLR4/PI3K/Akt 通路抑制氧化应激和炎症反应,从而缓解动脉粥样硬化

阅读:4
作者:Wang Yaru, Wei Bailing, Leng Mingyang, He Jiali, Zhao Yicheng, Xia Haohao, Luo Haibin, Bai Xue
Fraxin is a bioactive compound derived from Cortex Fraxini. It is known for its diverse biological activities and numerous benefits, including anti-inflammatory, antioxidant, analgesic, antimicrobial, antiviral, and immunomodulatory effects. Despite growing interest in natural compounds for cardiovascular diseases Fraxin's atheroprotective properties and molecular targets have not yet been fully elucidated. To address this gap, our research employed an integrated approach combining network pharmacology, molecular docking simulations, and in vitro biological validation to systematically unravel Fraxin's therapeutic mechanisms against atherosclerosis (AS). The results showed that 84 potential targets for Fraxin against AS were predicted through public databases, and the key target TLR4 was identified by protein-protein interaction and molecular docking analysis. GO enrichment and KEGG pathway analysis revealed that these potential targets were significantly enriched in the PI3K-Akt and oxidative stress responses pathways. Subsequently conducted in vitro studies validated that Fraxin modulates the TLR4/PI3K/Akt signaling pathway to suppress reactive oxygen species generation and downregulate pro-inflammatory cytokines including Il1b, Il6, and Tnf thereby slowing atherosclerotic disease advancement. This investigation methodically delineates Fraxin's therapeutic targets and underlying molecular mechanisms in AS management, establishing a scientific foundation for its potential translation into clinical practice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。