Peroxiredoxin (Prx) plays a role in maintaining the balance of intracellular reactive oxygen species. The peroxidase SiPrx gene from the Tianshan Snow Lotus (Saussurea involucrata) has been proved to significantly enhance the stress resistance of plants. In this study, the SiPrx gene was expressed heterogeneously in high-quality herbage Silphium perfoliatum L. (SP). After treatment with NaCl, the transgenic SP only exhibited partial leaf wilting, whereas the wild-type (WT) plants were on the brink of death. Simultaneously, physiological and biochemical assays indicated that under high-salt conditions, the content of malondialdehyde in the transgenic plants was significantly lower than that in the WT plants, while the activity of antioxidant enzymes was significantly higher than that in the WT plants. The expression of the SiPrx gene has been shown to significantly enhance the salt stress resistance of transgenic SP. Furthermore, after treatment at -10 °C for 48 h, the leaves of transgenic plants were able to maintain a certain morphological structure, whereas the WT plants were completely wilted. Physiological and biochemical index measurements indicated that all indicators in the transgenic plants were significantly better than those in the WT plants. Based on these findings, this study plans to overexpress the SiPrx gene extracted from Saussurea involucrata in Comfrey using the Agrobacterium-mediated method and then study its effects on the stress resistance of transgenic SP. The research results indicate that the SiPrx gene shows significant application potential in enhancing the cold resistance and salt tolerance of SP. This study provides a certain research basis and scientific evidence for the mining of stress resistance genes in Saussurea involucrata and the cultivation of new varieties of SP.
The Gene SiPrx from Saussurea involucrata Enhances the Stress Resistance of Silphium perfoliatum L.
来自 Saussurea involucrata 的 SiPrx 基因增强了 Silphium perfoliatum L. 的抗逆性
阅读:10
作者:Liu Tao, Wu Baotang, Zhang Yao, Li Zhongqing, Xue Yanhua, Ding Xiaoqin, Yang Zhihui, Zhu Jianbo, Han Yajie
| 期刊: | Plants-Basel | 影响因子: | 4.100 |
| 时间: | 2025 | 起止号: | 2025 Mar 26; 14(7):1030 |
| doi: | 10.3390/plants14071030 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
