Brassinosteroid-Mediated Resistance to Cobalt-Induced Toxicity by Regulating Hormonal Balance, Cellular Metabolism, and Antioxidant Defense in Maize.

油菜素甾醇通过调节玉米的激素平衡、细胞代谢和抗氧化防御来介导对钴诱导毒性的抗性

阅读:3
作者:Salam Abdul, Chang Jinzhe, Yang Liupeng, Zeeshan Muhammad, Iqbal Anas, Khan Ali Raza, Afridi Muhammad Siddique, Ulhassan Zaid, Azhar Wardah, Zhang Zhixiang, Zhang Peiwen
Brassinosteroids (BRs) play an essential role in regulating plant metabolic pathways that influence growth, development, and stress responses. However, their role in alleviating cobalt (Co) stress has not been extensively studied. This research aimed to assess the impact of exogenous BRs (0.1 µM) on maize subjected to Co stress (300 µM) in a hydroponic experiment. The results indicated that BR supplementation significantly decreased the accumulation of H(2)O(2) by 17.79 and 16.66%, O(2)(•-) by 28.5 and 21.48%, and MDA by 37.5 and 37.9% in shoot and root, respectively, as compared to Co stress alone. Additionally, BRs enhanced endogenous levels of BRs (31.16%) and growth hormones (IAA 50.8%, JA 57.8%, GA 52.5%), and reduced Co contents by 26.3% in roots and 36.1% in shoots. BRs enhanced antioxidant enzyme activity both in the shoot and root, leading to reduced ROS levels as confirmed by laser scanning confocal microscopy. Furthermore, BRs increased phenols, flavonoids, and soluble sugars, and elevated total protein content. Observations from transmission electron microscopy indicated reduced ultrastructural damage in plants treated with BRs under Co stress. Taken together, this study highlights the role of BRs in alleviating Co stress in maize, demonstrating their efficiency in enhancing stress tolerance by modulating hormone levels and key metabolic processes.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。