Phosphorylation of BRCA1 by ATM upon double-strand breaks impacts ATM function in end-resection: A potential feedback loop

ATM在双链断裂后对BRCA1的磷酸化影响ATM在末端切除中的功能:一种潜在的反馈回路

阅读:1
作者:Leilei Qi ,Reka Chakravarthy ,Monica M Li ,Chu-Xia Deng ,Rong Li ,Yanfen Hu

Abstract

BRCA1 maintains genome stability by promoting homologous recombination (HR)-mediated DNA double-strand break (DSB) repair. Mutation of mouse BRCA1-S1152, corresponding to an ATM phosphorylation site in its human counterpart, resulted in increased genomic instability and tumor incidence. In this study, we report that BRCA1-S1152 is part of a feedback loop that sustains ATM activity. BRCA1-S1152A mutation impairs recruitment of the E3 ubiquitin ligase SKP2. This in turn attenuates NBS1-K63 ubiquitination by SKP2 at DSB, impairs sustained ATM activation, and ultimately leads to deficient end resection, the commitment step in the HR repair pathway. Auto-phosphorylation of human ATM at S1981 is known to be important for its kinase activation; we mutated the corresponding amino acid residue in mouse ATM (S1987A) to characterize potential roles of mouse ATM-S1987 in the BRCA1-SKP2-NBS1-ATM feedback loop. Unexpectedly, MEFs carrying the ATM-S1987A knockin mutation maintain damage-induced ATM kinase activation, suggesting a species-specific function of human ATM auto-phosphorylation. Keywords: Biochemistry; Biochemistry applications; Biological sciences.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。