Conclusion
Taken together, our findings provide the first clues regarding the role of the miR-143/145 cluster as a tumor suppressor in breast cancer through the inhibition of ERBB3 translation. These results also support the idea that different miRNAs in a cluster can synergistically repress a given target mRNA.
Results
We identified an inverse correlation between miR-143/145 levels and ERBB3 protein levels, but not between miR-143/145 levels and ERBB3 mRNA levels, in breast cancer tissue samples. We identified specific targeting sites for miR-143 and miR-145 (miR-143/145) in the 3'-untranslated region (3'-UTR) of the ERBB3 gene and regulate ERBB3 expression. We demonstrated that the repression of ERBB3 by miR-143/145 suppressed the proliferation and invasion of breast cancer cells, and that miR-143/145 showed an anti-tumor effect by negatively regulating ERBB3 in the xenograft mouse model. Interestingly, miR-143 and miR-145 showed a cooperative repression of ERBB3 expression and cell proliferation and invasion in breast cancer cells, such that the effects of the two miRNAs were greater than with either miR-143 or miR-145 alone.
