OBJECTIVE: In this study, we investigated the potential mechanism of action of Qing Bi Yin (QBY) in psoriasis treatment via regulation of the sphingosine-1-phosphate (S1P)/sphingosine-1-phosphate receptor 1 (S1PR1) pathway and Th17 cell differentiation. METHODS: Network pharmacology was used to identify potential targets and elucidate the potential mechanisms of QBY in psoriasis. The predicted mechanisms were validated with in vitro Th17 cell differentiation assays using isolated mouse splenic CD4+ T cells. Molecular docking was performed to evaluate the binding affinities between active compounds and key target proteins. RESULTS: We identified 262 overlapping QBY psoriasis target genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed significant associations with the sphingolipid signaling pathway, Th17 cell differentiation, and IL-17 signaling pathway. Network algorithms were used to identify 10 key active compounds and five hub genes. QBY treatment suppresses S1P synthesis and S1pr1 expression in Th17-polarized cells. QBY inhibited Th17 cell proliferation and differentiation, reduced inflammatory cytokine secretion by Th17 cells via the S1P/S1PR1 pathway, and modulated STAT3 and SMAD2 phosphorylation. Molecular docking showed strong binding affinities between active compounds (glabridin, luteolin, licoflavone A, and isobutyrylshikonin) from QBY and key targets (STAT3, SMAD2, SPHK1, and RORγt) in Th17 cells. CONCLUSION: QBY ameliorates psoriatic inflammation by regulating Th17 cell differentiation via the S1P/S1PR1 signaling pathway. These findings underscore the clinical translational potential of QBY and its active constituent glabridin.
Mechanistic Insights into Qin Bi Yin for Psoriasis Treatment Using Network Pharmacology, Experimental Validation, and Molecular Docking.
利用网络药理学、实验验证和分子对接技术,深入探究秦必茵治疗银屑病的机制
阅读:4
作者:Zhang Shouxu, Du Yue, Zhang Haomin, Duan Xingwu, Li Lingling
| 期刊: | Journal of Inflammation Research | 影响因子: | 4.100 |
| 时间: | 2025 | 起止号: | 2025 Oct 1; 18:13535-13554 |
| doi: | 10.2147/JIR.S544019 | 研究方向: | 免疫/内分泌 |
| 疾病类型: | 银屑病 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
