Protection efficacy of mRNA-based SARS-CoV-2 variant vaccine in non-human primates.

mRNA SARS-CoV-2 变异疫苗在非人灵长类动物中的保护效力

阅读:6
作者:Yi Dongrong, Zhang Yongxin, Wang Jing, Liu Qian, Ma Ling, Li Quanjie, Guo Saisai, Zheng Ruifang, Li Xiaoyu, Li Xingong, Dong Yijie, Lu Shuaiyao, Zhang Weiguo, Peng Xiaozhong, Cen Shan
The rapid emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants that evade immunity elicited by vaccination has posed a global challenge to the control of the coronavirus disease 2019 (COVID-19) pandemic. Therefore, developing countermeasures that broadly protect against SARS-CoV-2 and related sarbecoviruses is essential. Herein, we have developed a lipid nanoparticle (LNP)-encapsulated mRNA (mRNA-LNP) encoding the full-length Spike (S) glycoprotein of SARS-CoV-2 (termed RG001), which confers complete protection in a non-human primate model. Intramuscular immunization of two doses of RG001 in Rhesus monkey elicited robust neutralizing antibodies and cellular response against SARS-CoV-2 variants, resulting in significantly protected SARS-CoV-2-infected animals from acute lung lesions and complete inhibition of viral replication in all animals immunized with low or high doses of RG001. More importantly, the third dose of RG001 vaccination elicited effective neutralizing antibodies against current epidemic XBB and JN.1 strains and similar cellular response against SARS-CoV-2 Omicron variants (BA.1, XBB.1.16, and JN.1) were observed in immunized mice. All these results together strongly support the great potential of RG001 in preventing the infection of SARS-CoV-2 variants of concern (VOCs).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。