Production of novel SARS-CoV-2 Spike truncations in Chinese hamster ovary cells leads to high expression and binding to antibodies.

在中国仓鼠卵巢细胞中生产新型 SARS-CoV-2 刺突蛋白截短体可导致高表达并与抗体结合

阅读:4
作者:Minami Shiaki A, Jung Seongwon, Huang Yihan, Harris Bradley S, Kenaston Matthew W, Faller Roland, Nandi Somen, McDonald Karen A, Shah Priya S
SARS-CoV-2 Spike is a key protein that mediates viral entry into cells and elicits antibody responses. Its importance in infection, diagnostics, and vaccinations has created a large demand for purified Spike for clinical and research applications. Spike is difficult to express, prompting modifications to the protein and expression platforms to improve yields. Alternatively, the Spike receptor-binding domain (RBD) is commonly expressed with higher titers, though it has lower sensitivity in serological assays. Here, we improve transient Spike expression in Chinese hamster ovary (CHO) cells. We demonstrate that Spike titers increase significantly over the expression period, maximizing at 14 mg L(-1) on day 7. In comparison, RBD titers peak at 54 mg L(-1) on day 3. Next, we develop eight Spike truncations (T1-T8) in pursuit of truncation with high expression and antibody binding. The truncations T1 and T4 express at 130 and 73 mg L(-1) , respectively, which are higher than our RBD titers. Purified proteins were evaluated for binding to antibodies raised against full-length Spike. T1 has similar sensitivity as Spike against a monoclonal antibody and even outperforms Spike for a polyclonal antibody. These results suggest that T1 is a promising Spike alternative for use in various applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。