BACKGROUND: Epitope selection is the key to peptide vaccines development. Bioinformatics tools can efficiently improve the screening of antigenic epitopes and help to choose the right ones. OBJECTIVE: To predict, synthesize and testify peptide epitopes at spike protein, assess the effect of mutations on epitope humoral immunity, thus provide clues for the design and development of epitope peptide vaccines against SARS-CoV-2. METHODS: Bioinformatics servers and immunological tools were used to identify the helper T lymphocyte, cytotoxic T lymphocyte, and linear B lymphocyte epitopes on the S protein of SARS-CoV-2. Physicochemical properties of candidate epitopes were analyzed using IEDB, VaxiJen, and AllerTOP online software. Three candidate epitopes were synthesized and their antigenic responses were evaluated by binding antibody detection. RESULTS: A total of 20 antigenic, non-toxic and non-allergenic candidate epitopes were identified from 1502 epitopes, including 6 helper T-cell epitopes, 13 cytotoxic T-cell epitopes, and 1 linear B cell epitope. After immunization with antigen containing candidate epitopes S(206-221), S(403-425), and S(1157-1170) in rabbits, the binding titers of serum antibody to the corresponding peptide, S protein, receptor-binding domain protein were (415044, 2582, 209.3), (852819, 45238, 457767) and (357897, 10528, 13.79), respectively. The binding titers to Omicron S protein were 642, 12,878 and 7750, respectively, showing that N211L, DEL212 and K417N mutations cause the reduction of the antibody binding activity. CONCLUSIONS: Bioinformatic methods are effective in peptide epitopes design. Certain mutations of the Omicron would lead to the loss of antibody affinity to Omicron S protein.
Bioinformatics-based SARS-CoV-2 epitopes design and the impact of spike protein mutants on epitope humoral immunities.
基于生物信息学的 SARS-CoV-2 表位设计以及刺突蛋白突变体对表位体液免疫的影响
阅读:5
作者:Sun Qi, Huang Zhuanqing, Yang Sen, Li Yuanyuan, Ma Yue, Yang Fei, Zhang Ying, Xu Fenghua
| 期刊: | Immunobiology | 影响因子: | 2.300 |
| 时间: | 2022 | 起止号: | 2022 Nov;227(6):152287 |
| doi: | 10.1016/j.imbio.2022.152287 | 研究方向: | 炎症/感染 |
| 疾病类型: | 新冠 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
