Conclusions/interpretation
These results indicate that exposure to metformin during gestation modulates the early steps of beta cell development (prior to E14.0) towards an increase in the number of pancreatic and endocrine progenitors. These changes ultimately result in a higher beta cell fraction at birth. These findings are of clinical importance given that metformin is currently used for the treatment of gestational diabetes.
Methods
Pancreatic rudiments from CD-1 mice at embryonic day 13.0 (E13.0) were cultured with metformin, 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR, an AMPK activator) or vehicle control in vitro. In another set of studies, pregnant C57BL/6 mice were treated with metformin throughout gestation. Embryonic (E14.0) and neonatal pancreases were then analysed for their morphometry.
Results
In vitro metformin treatment led to an increase in the proliferation and number of pancreatic duodenal homeobox 1-positive (PDX1(+)) progenitors. These results were reproduced by in vitro culture of embryonic pancreas rudiments with AICAR, suggesting that AMPK activation was involved. Similarly, metformin administration to pregnant dams induced an increase in both PDX1(+) and neurogenin 3-positive progenitors in the embryonic pancreas at E14.0 and these changes resulted in an increased beta cell fraction in neonates. Conclusions/interpretation: These results indicate that exposure to metformin during gestation modulates the early steps of beta cell development (prior to E14.0) towards an increase in the number of pancreatic and endocrine progenitors. These changes ultimately result in a higher beta cell fraction at birth. These findings are of clinical importance given that metformin is currently used for the treatment of gestational diabetes.
