Lack of DNA polymerase theta (POLQ) radiosensitizes bone marrow stromal cells in vitro and increases reticulocyte micronuclei after total-body irradiation.

DNA聚合酶θ(POLQ)的缺乏会使体外骨髓基质细胞对放射线更加敏感,并增加全身照射后网织红细胞微核的数量

阅读:5
作者:Goff Julie P, Shields Donna S, Seki Mineaki, Choi Serah, Epperly Michael W, Dixon Tracy, Wang Hong, Bakkenist Christopher J, Dertinger Stephen D, Torous Dorothea K, Wittschieben John, Wood Richard D, Greenberger Joel S
Abstract Mammalian POLQ (pol theta) is a specialized DNA polymerase with an unknown function in vivo. Roles have been proposed in chromosome stability, as a backup enzyme in DNA base excision repair, and in somatic hypermutation of immunoglobulin genes. The purified enzyme can bypass AP sites and thymine glycol. Mice defective in POLQ are viable and have been reported to have elevated spontaneous and radiation-induced frequencies of micronuclei in circulating red blood cells. To examine the potential roles of POLQ in hematopoiesis and in responses to oxidative stress responses, including ionizing radiation, bone marrow cultures and marrow stromal cell lines were established from Polq(+/+) and Polq(-/-) mice. Aging of bone marrow cultures was not altered, but Polq(-/-) cells were more sensitive to gamma radiation than were Polq(+/+) cells. The D(0) was 1.38 +/- 0.06 Gy for Polq(+/+) cells compared to 1.27 +/- 0.16 and 0.98 +/- 0.10 Gy (P = 0.032) for two Polq(-/-) clones. Polq(-/-) cells were moderately more sensitive to bleomycin than Polq(+/+) cells and were not hypersensitive to paraquat or hydrogen peroxide. ATM kinase activation appeared to be normal in gamma-irradiated Polq(-/-) cells. Inhibition of ATM kinase activity increased the radiosensitivity of Polq(+/+) cells slightly but did not affect Polq(-/-) cells. Polq(-/-) mice had more spontaneous and radiation-induced micronucleated reticulocytes than Polq+/+ and (+/-) mice. The sensitivity of POLQ-defective bone marrow stromal cells to ionizing radiation and bleomycin and the increase in micronuclei in red blood cells support a role for this DNA polymerase in cellular tolerance of DNA damage that can lead to double-strand DNA breaks.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。