Important cell populations reside within tissues and are not accessed by traditional blood draws used to monitor the immune system. To address this issue at an essential barrier tissue, the skin, we created a microneedle-based technology for longitudinal sampling of cells and interstitial fluid, enabling minimally invasive parallel monitoring of immune responses. Solid microneedle projections were coated by a cross-linked biocompatible polymer, which swells upon skin insertion, forming a porous matrix for local leukocyte infiltration. By embedding molecular adjuvants and specific antigens encapsulated in nanocapsules within the hydrogel coating, antigen-specific lymphocytes can be enriched in the recovered cell population, allowing for subsequent detailed phenotypic and functional analysis. We demonstrate this approach in mice immunized with a model protein antigen or infected in the skin with vaccinia virus. After vaccination or infection, sampling microneedles allowed tissue-resident memory T cells (T(RM)s) to be longitudinally monitored in the skin for many months, during which time the antigen-specific T cell population in systemic circulation contracted to low or undetectable counts. Sampling microneedles did not change the immune status of naïve or antigen-exposed animals. We also validated the ability of cell sampling using human skin samples. This approach may be useful in vaccines and immunotherapies to temporally query T(RM) populations or as a diagnostic platform to sample for biomarkers in chronic inflammatory and autoimmune disorders, allowing information previously accessible only via invasive biopsies to be obtained in a minimally invasive manner from the skin or other mucosal tissues.
Cell and fluid sampling microneedle patches for monitoring skin-resident immunity.
用于监测皮肤驻留免疫的细胞和体液采样微针贴片
阅读:2
作者:Mandal Anasuya, Boopathy Archana V, Lam Lionel K W, Moynihan Kelly D, Welch Mary E, Bennett Nitasha R, Turvey Michelle E, Thai Nikki, Van Jenny H, Love J Christopher, Hammond Paula T, Irvine Darrell J
| 期刊: | Science Translational Medicine | 影响因子: | 14.600 |
| 时间: | 2018 | 起止号: | 2018 Nov 14; 10(467):eaar2227 |
| doi: | 10.1126/scitranslmed.aar2227 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
