Plasticity of the GABAergic phenotype of the "glutamatergic" granule cells of the rat dentate gyrus.

大鼠齿状回“谷氨酸能”颗粒细胞GABA能表型的可塑性

阅读:4
作者:Gutiérrez Rafael, Romo-Parra Héctor, Maqueda Jasmín, Vivar Carmen, Ramìrez Mónica, Morales Miguel A, Lamas Mónica
The "glutamatergic" granule cells of the dentate gyrus transiently express a GABAergic phenotype when a state of hyperexcitability is induced in the adult rat. Consequently, granule cell (GC) activation provokes monosynaptic GABAergic responses in their targets of area CA3. Because GABA exerts a trophic action on neonatal CA3 and mossy fibers (MF) constitute its main input, we hypothesized that the GABAergic phenotype of the MF could also be transiently expressed early in life. We addressed this possibility with a multidisciplinary approach. Electrophysiological recordings in developing rats revealed that, until day 22-23 of age, glutamate receptor antagonists block the excitatory response evoked in pyramidal cells by GCs, isolating a fast metabotropic glutamate receptor-sensitive GABAergic response. In a clear-cut manner from day 23-24 of age, GC activation in the presence of glutamatergic antagonists was unable to evoke synaptic responses in CA3. Immunohistological experiments showed the presence of GABA and GAD67 (glutamate decarboxylase 67 kDa isoform) in the developing GCs and their MF, and, using reverse transcription-PCR, we confirmed the expression of vesicular GABA transporter mRNA in the developing dentate gyrus and its downregulation in the adult. The GABAergic markers were upregulated and MF inhibitory transmission reappeared when hyperexcitability was induced in adult rats. Our data evidence for the first time a developmental and activity-dependent regulation of the complex phenotype of the GC. At early ages, the GABAergic input from the MF may add to the interneuronal input to CA3 to foster development, and, in the adult, it can possibly protect the system from enhanced excitability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。