Ontogenic changes of the spinal GABAergic cell population are controlled by the serotonin (5-HT) system: implication of 5-HT1 receptor family.

脊髓 GABA 能细胞群的个体发育变化受血清素 (5-HT) 系统控制:5-HT1 受体家族的意义

阅读:4
作者:Allain Anne-Emilie, Meyrand Pierre, Branchereau Pascal
During the development of the nervous system, the acquisition of the GABA neurotransmitter phenotype is crucial for neural networks operation. Although both intrinsic and extrinsic signals such as transcription factors and growth factors have been demonstrated to govern the acquisition of GABA, few data are available concerning the effects of modulatory transmitters expressed by axons that progressively invade emerging neuronal networks. Among such transmitters, serotonin (5-HT) is a good candidate because serotonergic axons innervate the entire CNS at very early stages of development. We have shown previously that descending 5-HT slows the maturation of inhibitory synaptic transmission in the embryonic mouse spinal cord. We now report that 5-HT also regulates the spatiotemporal changes of the GABAergic neuronal population in the mouse spinal cord. Using a quantitative confocal study performed on acute and cultured spinal cords, we find that the GABAergic population matures according to a similar rostrocaudal temporal gradient both in utero and in organotypic culture. Moreover, we show that 5-HT delays the appearance of the spinal GABAergic system. Indeed, in the absence of 5-HT descending inputs or exogenous 5-HT, the GABAergic population matures earlier. In the presence of exogenous 5-HT, the GABA population matures later. Finally, using a pharmacological approach, we show that 5-HT exerts its action via the 5-HT1 receptor family. Together, our data suggest that, during the course of the embryonic development, 5-HT descending inputs delay the maturation of lumbar spinal motor networks relative to brachial networks.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。