During the translation cycle, a cognate deacylated tRNA can only move together with the codon into the E site. We here present the first structure of a cognate tRNA bound to the ribosomal E site resulting from translocation by EF-G, in which an entire L1 stalk (L1 protein and L1 rRNA) interacts with E-site tRNA (E-tRNA), representing an authentic ribosome elongation complex. Our results revealed that the Watson-Crick base pairing is formed at the first and second codon-anticodon positions in the E site in the ribosome elongation complex, whereas the codon-anticodon interaction in the third position is indirect. Analysis of the observed conformations of mRNA and E-tRNA suggests that the ribosome intrinsically has the potential to form codon-anticodon interaction in the E site, independently of the mRNA configuration. We also present a detailed description of the biologically relevant position of the entire L1 stalk and its interacting cognate E-tRNA, which provides a better understanding of the structural basis for translation elongation. Furthermore, to gain insight into translocation, we report the positioning of protein L6 contacting EF-G, as well as the conformational change of the C-terminal tail of protein S13 in the decoding center.
Crystal structure of 70S ribosome with both cognate tRNAs in the E and P sites representing an authentic elongation complex.
70S 核糖体的晶体结构,E 位点和 P 位点上均含有相应的 tRNA,代表了一个真正的延伸复合物
阅读:5
作者:Feng Shu, Chen Yun, Gao Yong-Gui
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2013 | 起止号: | 2013;8(3):e58829 |
| doi: | 10.1371/journal.pone.0058829 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
