Diffusion-based bioartificial pancreas (BAP) devices are limited by poor islet viability and functionality due to inadequate mass transfer resulting in islet hypoxia and delayed glucose-insulin kinetics. While intravascular ultrafiltration-based BAP devices possess enhanced glucose-insulin kinetics, the polymer membranes used in these devices provide inadequate ultrafiltrate flow rates and result in excessive thrombosis. Here, we report the silicon nanopore membrane (SNM), which exhibits a greater hydraulic permeability and a superior pore size selectivity compared to polymer membranes for use in BAP applications. Specifically, we demonstrate that the SNM-based intravascular BAP with â¼10 and â¼40 nm pore sized membranes support high islet viability (>60%) and functionality (<15 minute insulin response to glucose stimulation) at clinically relevant islet densities (5700 and 11â400 IE per cm(2)) under convection in vitro. In vivo studies with â¼10 nm pore sized SNM in a porcine model showed high islet viability (>85%) at clinically relevant islet density (5700 IE per cm(2)), c-peptide concentration of 144 pM in the outflow ultrafiltrate, and hemocompatibility under convection. These promising findings offer insights on the development of next generation of full-scale intravascular devices to treat T1D patients in the future.
An intravascular bioartificial pancreas device (iBAP) with silicon nanopore membranes (SNM) for islet encapsulation under convective mass transport.
一种血管内生物人工胰腺装置(iBAP),采用硅纳米孔膜(SNM)进行胰岛封装,利用对流传质进行物质输送
阅读:4
作者:Song Shang, Blaha Charles, Moses Willieford, Park Jaehyun, Wright Nathan, Groszek Joey, Fissell William, Vartanian Shant, Posselt Andrew M, Roy Shuvo
| 期刊: | Lab on a Chip | 影响因子: | 5.400 |
| 时间: | 2017 | 起止号: | 2017 May 16; 17(10):1778-1792 |
| doi: | 10.1039/c7lc00096k | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
