This research examines the enzymatic modification of lysozyme, a glycosidic hydrolase that has restricted effectiveness against Gram-negative bacteria, in order to produce bioactive peptide fractions with improved antibacterial and physicochemical characteristics. Utilizing chicken egg lysozyme, modifications were performed in controlled settings with proteolytic enzymes, mainly pepsin, and experiments with a pepsin-trypsin ratio. The modification methods sought to improve the hydrophobic nature of lysozyme's surface, create oligomeric and peptide forms, and decrease immunogenicity. Findings showed that raising pepsin concentration enhanced the creation of peptide fractions, increasing surface hydrophobicity while reducing hydrolytic and antioxidant activities. Increased hydrophobicity and reduced enzyme activity were linked to enhanced antibacterial effectiveness, particularly against Gram-negative bacteria, a characteristic absent in natural lysozyme. Additionally, the research noted a decrease in immunoreactivity as pepsin concentrations increased, achieving the lowest antibody response in optimized formulations. This enzymatic method offers an economical way to create lysozyme derivatives that hold considerable promise for wider applications, particularly in scenarios where lower immunoreactivity and a prolonged antibacterial spectrum are needed.
The influence of proteolytic enzymes on the change of lysozyme properties.
蛋白水解酶对溶菌酶性质变化的影响
阅读:4
作者:Tomczyk Åukasz, LeÅnierowski Grzegorz, Tomczak Aneta, Ajemigbitse Jubilee Amajuoritse, Szablewski Tomasz, Cegielska-Radziejewska Renata
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2025 | 起止号: | 2025 Jun 26; 20(6):e0326386 |
| doi: | 10.1371/journal.pone.0326386 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
