Plant-based food products are becoming increasingly popular among consumers. The chemical composition and the processing of plant-based products presumably fuel the Maillard reaction, but the abundance of Maillard reaction products in plant-based food products is rarely investigated. In this study, the concentration of N-ε-carboxymethyllysine (CML), N-ε-carboxyethyllysine (CEL) and methylglyoxal-hydroimidazolone (MG-H1) was analyzed with UPLC-MS/MS in six plant-based dairy alternatives. Total amounts of free and protein-bound glycation compounds ranged from 0.03 to 0.31 mg/100 g food for CML, 0.04-1.28 mg/100 g food for CEL and 0.69-2.84 mg/100 g food for MG-H1. Free glycation compounds were abundant in yogurt and cheese, but not milk alternatives. During simulated gastrointestinal digestion, CML and MG-H1 were released either as modified amino acid or in peptide-bound form, respectively. CEL was released to a significantly lesser extent in peptide-bound form. For CML, de novo formation of up to 400 % during digestion was observed. The results showed that Maillard reaction products are quantitatively important process-induced compounds in plant-based food products which are available after digestion.
Maillard reaction products in plant-based dairy alternatives and their release during simulated gastrointestinal digestion.
植物性乳制品替代品中的美拉德反应产物及其在模拟胃肠道消化过程中的释放
阅读:7
作者:Bieck Kira, Ebert Franziska, Grune Tilman, Raupbach Jana
| 期刊: | Current Research in Food Science | 影响因子: | 7.000 |
| 时间: | 2025 | 起止号: | 2025 Jan 30; 10:100994 |
| doi: | 10.1016/j.crfs.2025.100994 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
