microRNA-200a silencing protects neural stem cells against cerebral ischemia/reperfusion injury.

microRNA-200a 沉默可保护神经干细胞免受脑缺血/再灌注损伤

阅读:4
作者:Ma Ji, Shui Shaofeng, Han Xinwei, Guo Dong, Li Tengfei, Yan Lei
Neural stem cells (NSCs) play major roles in neurological recovery after cerebral infarction (CI). This study was trying to investigate whether miR-200a, a vital regulator in cell proliferation, migration and apoptosis, also has a role in oxygen-glucose deprivation/reperfusion (OGD/R) injured NSCs. In this study, primary NSCs were subjected to OGD/R conditions to mimic an in vitro CI model. Before OGD/R induction, NSCs were transfected with vector or shRNA against miR-200a to overexpress or suppress miR-200a expression. The changes in cell viability, apoptosis, migration, the expression of c-Myc, and the phosphorylation of STAT1, STAT3 and MAPK were respectively assessed. Inhibitors of STAT1/3 and MAPK, i.e., Nifuroxazide and BIRB 796, were used to administrate miR-200a-silenced NSCs, and the expressions of above mentioned proteins were detected. After OGD/R exposure, miR-200a was up-regulated in NSCs (P < 0.001). miR-200a silencing alleviated OGD/R-induced the decrease of cell viability and migration (P < 0.01); meanwhile, alleviated OGD/R-induced apoptosis via reducing Bax/Bcl-2 ratio and down-regulating p53 and cytochrome c (P < 0.01 or P < 0.001). c-Myc, p-STAT1, p-STAT3, p-MAPK were all negatively regulated by miR-200a (P < 0.01 or P < 0.001); more important, the increase of c-Myc induced by miR-200a silencing was abolished by Nifuroxazide or BIRB 796 (P < 0.01 or P < 0.001). These data indicate miR-200a silencing protects NSCs from OGD/R-induced injury, possibly via regulating the STATs/c-Myc and MAPK/c-Myc signalings.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。