In this study we addressed the function of the Krebs cycle to determine which enzyme(s) limits the availability of reduced nicotinamide adenine dinucleotide (NADH) for the respiratory chain under H(2)O(2)-induced oxidative stress, in intact isolated nerve terminals. The enzyme that was most vulnerable to inhibition by H(2)O(2) proved to be aconitase, being completely blocked at 50 microm H(2)O(2). alpha-Ketoglutarate dehydrogenase (alpha-KGDH) was also inhibited but only at higher H(2)O(2) concentrations (>/=100 microm), and only partial inactivation was achieved. The rotenone-induced increase in reduced nicotinamide adenine dinucleotide (phosphate) [NAD(P)H] fluorescence reflecting the amount of NADH available for the respiratory chain was also diminished by H(2)O(2), and the effect exerted at small concentrations (=50 microm) of the oxidant was completely prevented by 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), an inhibitor of glutathione reductase. BCNU-insensitive decline by H(2)O(2) in the rotenone-induced NAD(P)H fluorescence correlated with inhibition of alpha-ketoglutarate dehydrogenase. Decrease in the glutamate content of nerve terminals was induced by H(2)O(2) at concentrations inhibiting aconitase. It is concluded that (1) aconitase is the most sensitive enzyme in the Krebs cycle to inhibition by H(2)O(2), (2) at small H(2)O(2) concentrations (=50 microm) when aconitase is inactivated, glutamate fuels the Krebs cycle and NADH generation is unaltered, (3) at higher H(2)O(2) concentrations (>/=100 microm) inhibition of alpha-ketoglutarate dehydrogenase limits the amount of NADH available for the respiratory chain, and (4) increased consumption of NADPH makes a contribution to the H(2)O(2)-induced decrease in the amount of reduced pyridine nucleotides. These results emphasize the importance of alpha-KGDH in impaired mitochondrial function under oxidative stress, with implications for neurodegenerative diseases and cell damage induced by ischemia/reperfusion.
Inhibition of Krebs cycle enzymes by hydrogen peroxide: A key role of [alpha]-ketoglutarate dehydrogenase in limiting NADH production under oxidative stress.
过氧化氢对克雷布斯循环酶的抑制作用:α-酮戊二酸脱氢酶在氧化应激下限制 NADH 产生中的关键作用
阅读:5
作者:Tretter L, Adam-Vizi V
| 期刊: | Journal of Neuroscience | 影响因子: | 4.000 |
| 时间: | 2000 | 起止号: | 2000 Dec 15; 20(24):8972-9 |
| doi: | 10.1523/JNEUROSCI.20-24-08972.2000 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
