Curcumin inhibits ferroptosis through dessuccinylation of SIRT5-associated ACSL4 protein, and plays a chondroprotective role in osteoarthritis.

姜黄素通过对 SIRT5 相关 ACSL4 蛋白进行去琥珀酰化来抑制铁死亡,并在骨关节炎中发挥软骨保护作用

阅读:3
作者:Xu Yong, Li Yongxia, Liu Lei, Jing Qingling, Ye Xiaojian
BACKGROUND: Ferroptosis of chondrocytes plays a crucial role in the progression of osteoarthritis (OA). This study aimed to explore the role of curcumin (Cur) in interfering with chondrocyte ferroptosis in OA. METHODS: Rat chondrocytes were treated with 10 ng/mL interleukin-1β (IL-1β) for 48 hours to mimic the OA microenvironment. The protective effects of Cur were evaluated in vitro by assessing cell viability and ferroptosis. Molecular docking was performed to validate the structural interaction between Cur and the SIRT5 protein. Co-immunoprecipitation (CO-IP) confirmed the binding relationship between SIRT5 and ACSL4. Additionally, the efficacy of Cur in alleviating OA progression was assessed in an in vivo OA rat model. RESULTS: Cur treatment significantly attenuated IL-1β-induced chondrocyte injury by enhancing cell viability and inhibiting ferroptosis. Cur also markedly reduced global protein lysine succinylation levels. IL-1β suppressed SIRT5 expression, while Cur treatment upregulated SIRT5 expression. The molecular structure of Cur exhibits strong complementarity with the SIRT5 protein, forming a stable complex with high binding affinity. Inhibition of SIRT5 attenuated the protective effects of Cur on chondrocytes and increased ACSL4 succinylation levels. SIRT5 physically interacted with ACSL4, and SIRT5-mediated desuccinylation of ACSL4 repressed its function, thereby mitigating ferroptosis. Cur alleviates OA progression in vivo by inhibiting cartilage destruction, bone erosion, and chondrocyte injury, and by smoothing subchondral bone surfaces. CONCLUSION: Cur protects chondrocytes in vitro by inhibiting ferroptosis and suppresses cartilage degeneration and bone erosion in vivo, demonstrating a chondroprotective role in OA. These effects are mediated through SIRT5-dependent desuccinylation of ACSL4, which regulates ferroptosis pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。