A mouse organoid platform for modeling cerebral cortex development and cis-regulatory evolution in vitro

用于体外模拟大脑皮层发育和顺式调控进化的鼠类器官平台

阅读:3
作者:Daniel Medina-Cano ,Mohammed T Islam ,Veronika Petrova ,Sanjana Dixit ,Zerina Balic ,Marty G Yang ,Matthias Stadtfeld ,Emily S Wong ,Thomas Vierbuchen
Natural selection has shaped the gene regulatory networks that orchestrate cortical development, leading to structural and functional variation across mammals, but the molecular and cellular mechanisms underpinning these changes have only begun to be characterized. Here, we develop a reproducible protocol for cerebral cortex organoid generation from mouse epiblast stem cells (EpiSCs), which recapitulates the timing and cellular differentiation programs of the embryonic cortex. We generated cortical organoids from F1 hybrid EpiSCs derived from crosses between laboratory mice (C57BL/6J) and four wild-derived inbred strains spanning ∼1 M years of evolutionary divergence to comprehensively map cis-acting transcriptional regulatory variation across developing cortical cell types, using single-cell RNA sequencing (scRNA-seq). We identify hundreds of genes that exhibit dynamic allelic imbalances, providing the first insight into the developmental mechanisms underpinning changes in cortical structure and function between subspecies. These experimental methods and cellular resources represent a powerful platform for investigating gene regulation in the developing cerebral cortex.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。