Interaction between time-of-day and oxytocin efficacy in mice and humans with and without gestational diabetes.

时间与催产素在患有或未患有妊娠糖尿病的小鼠和人类中的疗效之间的相互作用

阅读:8
作者:Duong Thu Van-Quynh, Yaw Alexandra M, Zhou Guoli, Sina Niharika, Cherukuri Aneesh Sai, Nguyen Duong, Cataldo Kylie, Ly Nicollette, Sen Aritro, Sempere Lorenzo, Detrie Cara, Seiler Robert, Olomu I Nicholas, Cortese Rene, Long Robert, Hoffmann Hanne M
Management of labor in women with diabetes is challenging due to the high risk of peri- and postpartum complications. To avoid cesarean section and assist with labor progression, Pitocin, a synthetic oxytocin, is frequently used to induce and augment labor. However, the efficacy of Pitocin is often compromised in diabetic pregnancies, leading to increased cesarian delivery. As diabetes deregulates the body's circadian timekeeping system and the time-of-day of the first Pitocin administration contributes to labor duration, our objective was to determine how the time of day and the circadian clock gene, Bmal1, gates oxytocin efficacy. Our studies in mice show that, compared to the rest phase of the day (lights on), the uterotonic efficacy of oxytocin is significantly increased during the active phase (lights off). Using in vitro studies, a myometrium-specific Bmal1 conditional knockout mouse model, and a mouse model of food-induced gestational diabetes, we find that Bmal1 is crucial for maintaining oxytocin receptor expression and response in the myometrium in mice. These findings also translate to humans, where oxytocin-induced human myometrial cell contraction is time-of-day dependent, and retrospective clinical data suggest that administration of Pitocin in the morning should be considered for pregnant women with gestational diabetes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。