Probing the effect of PEG-DNA interactions and buffer viscosity on tethered DNA in shear flow.

探究 PEG-DNA 相互作用和缓冲液粘度对剪切流中束缚 DNA 的影响

阅读:4
作者:Zohra Fatema Tuz, Al-Zuhairi Huda, Reinoza Jefferson, Kim HyeongJun, Hanke Andreas
DNA flow-stretching is a widely employed, powerful technique for investigating the mechanisms of DNA-binding proteins involved in compacting and organizing chromosomal DNA. We combine single-molecule DNA flow-stretching experiments with Brownian dynamics simulations to study the effect of the crowding agent polyethylene glycol (PEG) in these experiments. PEG interacts with DNA by an excluded volume effect, resulting in compaction of single, free DNA molecules in PEG solutions. In addition, PEG increases the viscosity of the buffer solution. By stretching surface-tethered bacteriophage lambda DNA in a flow cell and tracking the positions of a quantum dot labeled at the free DNA end using total internal reflection fluorescence (TIRF) microscopy, we find that higher PEG concentrations result in increased end-to-end length of flow-stretched DNA and decreased fluctuations of the free DNA end. To better understand our experimental results, we perform Brownian dynamics simulations of a bead-spring chain model of flow-stretched DNA in a viscous buffer that models the excluded volume effect of PEG by an effective attractive interaction between DNA segments. We find quantitative agreement between our model and the experimental results for suitable PEG-DNA interaction parameters.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。