Cycling of Etk and Etp phosphorylation states is involved in formation of group 4 capsule by Escherichia coli.

大肠杆菌 Etk 和 Etp 磷酸化状态的循环参与了 4 型荚膜的形成

阅读:5
作者:Nadler Chen, Koby Simi, Peleg Adi, Johnson Austin C, Suddala Krishna C, Sathiyamoorthy Karthik, Smith Bennett E, Saper Mark A, Rosenshine Ilan
Capsules frequently play a key role in bacterial interactions with their environment. Escherichia coli capsules were categorized as groups 1 through 4, each produced by a distinct mechanism. Etk and Etp are members of protein families required for the production of group 1 and group 4 capsules. These members function as a protein tyrosine kinase and protein tyrosine phosphatase, respectively. We show that Etp dephosphorylates Etk in vivo, and mutations rendering Etk or Etp catalytically inactive result in loss of group 4 capsule production, supporting the notion that cyclic phosphorylation and dephosphorylation of Etk is required for capsule formation. Notably, Etp also becomes tyrosine phosphorylated in vivo and catalyzes rapid auto-dephosphorylation. Further analysis identified Tyr121 as the phosphorylated residue of Etp. Etp containing Phe, Glu or Ala in place of Tyr121 retained phosphatase activity and catalyzed dephosphorylation of Etp and Etk. Although EtpY121E and EtpY121A still supported capsule formation, EtpY121F failed to do so. These results suggest that cycles of phosphorylation and dephosphorylation of Etp, as well as Etk, are involved in the formation of group 4 capsule, providing an additional regulatory layer to the complex control of capsule production.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。