CRISPR-Cas9 ribonucleoproteins (RNPs) combined with a nucleic acid template encoding a chimeric antigen receptor (CAR) transgene can edit human cells to produce CAR T cells with precise CAR insertion at a single locus. However, many human cells have adverse innate immune responses to foreign nucleic acids, particularly circular double-stranded DNA (dsDNA). Here, we introduce Cleaved, LInearized with Protein Template (Cas9-CLIPT), a circular plasmid containing a single target sequence for the Cas9 RNP, such that during manufacturing, Cas9-RNP binds and cleaves the plasmid to linearize the dsDNA in vitro. Cas9-RNP remains bound to the linearized template and is delivered to cells to promote precise knock-in via homology-directed repair with Cas9-CLIPT. Cas9-CLIPT Nanoplasmids generate up to 1.7-fold higher rates of precise knock-in relative to linearized dsDNA, reaching efficiencies up to 60% with non-homologous end joining inhibition. Cas9-CLIPT-manufactured GD2 TRAC-CAR T cells are potent against GD2(+) neuroblastoma cells and exhibit an enriched stem cell memory phenotype. On several electroporation instruments and approaching clinically relevant yields, we successfully manufactured TRAC-CAR T cells using Cas9-CLIPT plasmids containing large (2-6 kb) transgenes. Cas9-CLIPT strategies have the potential to simplify donor template production and integrate large transgenes, allowing for more efficient nonviral manufacturing of multifunctional, genome-edited immune cell therapies.
Efficient nonviral integration of large transgenes into human TÂ cells using Cas9-CLIPT.
利用 Cas9-CLIPT 将大型转基因高效非病毒整合到人类 T 细胞中
阅读:4
作者:Tommasi Anna, Cappabianca Dan, Bugel Madison, Gimse Kirstan, Lund-Peterson Karl, Shrestha Hum, Arutyunov Denis, Williams James A, Police Seshidhar Reddy, Indurthi Venkata, Davis Sage Z, Murtaza Muhammed, Capitini Christian M, Saha Krishanu
| 期刊: | Molecular Therapy-Methods & Clinical Development | 影响因子: | 4.700 |
| 时间: | 2025 | 起止号: | 2025 Feb 18; 33(1):101437 |
| doi: | 10.1016/j.omtm.2025.101437 | 种属: | Human、Viral |
| 研究方向: | 细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
