New methods to produce large numbers of myeloid progenitor cells, precursors to macrophages (MΦs), by maintaining Hoxb8 transcription factor activity(1) has reinvigorated interest in MΦ cell therapies. We generated Hoxb8-dependent myeloid progenitors (HDPs) by transducing lineage-negative bone marrow cells with a constitutively expressed Hoxb8 flanked by loxP. HDPs proliferate indefinitely and differentiate into MΦ when Hoxb8 is removed by a tamoxifen-inducible Cre. We genetically modified HDPs with a constitutively active GMCSF receptor and the tamoxifen-induced transcription factor IRF8, which we have termed "HDP-on." The HDP-on proliferates without GMCSF and differentiates into the MΦ upon exposure to tamoxifen and ruxolitinib (GMCSF inhibitor via JAK1/2 blockade). We quantified the biodistribution of HDPs transplanted via intraperitoneal injection into immunodeficient NCG mice with a luciferase reporter; HDPs are detected for 14 days in the peritoneal cavity, liver, spleen, kidney, bone marrow, brain, lung, heart, and blood. In immunocompetent BALB/c mice, HDP-on cells, but not HDPs, are detected 1 day post-transplantation in the peritoneal cavity. Pretreatment of BALB/c mice with liposomal clodronate significantly enhances survival at day 7 for HDPs and HDP-on cells in the peritoneal cavity, spleen, and liver, but cells are undetectable at day 14. Short-term post-transplantation survival of HDPs is significantly improved using HDP-on and liposomal clodronate, opening a path for MΦ-based therapeutics.
Clodronate Improves Survival of Transplanted Hoxb8 Myeloid Progenitors with Constitutively Active GMCSFR in Immunocompetent Mice.
氯膦酸盐可提高免疫功能正常小鼠体内具有组成型活性 GMCSFR 的移植 Hoxb8 髓系祖细胞的存活率
阅读:4
作者:Lee Simon, Kivimäe Saul, Szoka Francis C
| 期刊: | Molecular Therapy-Methods & Clinical Development | 影响因子: | 4.700 |
| 时间: | 2017 | 起止号: | 2017 Sep 7; 7:60-73 |
| doi: | 10.1016/j.omtm.2017.08.007 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
