TTK activates ATR through RPA2 phosphorylation to promote olaparib resistance in ovarian cancer.

TTK 通过 RPA2 磷酸化激活 ATR,从而促进卵巢癌对奥拉帕尼产生耐药性

阅读:3
作者:Qi Gonghua, Ma Hanlin, Chen Jingying, Gai Panpan, Teng Kai
Resistance to poly(ADP‒ribose) polymerase inhibitors (PARPis) remains a significant challenge in ovarian cancer (OC) treatment. TTK protein kinase (TTK) has been implicated in cisplatin resistance in OC, but its role in PARPi resistance remains unclear. In this research, we found that TTK inhibition overcome olaparib resistance in HR-proficient OC cells, whereas TTK promotes olaparib resistance in HR-deficient OC cells. Mechanistically, TTK directly interacts with RPA2, facilitating phosphorylation of its S33 residue to activate the ATR signaling pathway. Knocking down RPA2 increased olaparib sensitivity in OC cells. Additionally, TTK-mediated resistance to olaparib through the RPA2/ATR signaling pathway was confirmed via both in vitro and in vivo models. In conclusion, TTK inhibition overcomes olaparib resistance in HR-proficient OC cells, in part by suppressing RPA2-S33 phosphorylation and attenuating ATR signaling. TTK inhibitors offer a promising strategy to increase the therapeutic efficacy of PARPis in OC patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。