Virulence strategies of pathogens depend on interaction with host cells. The binding and activation of receptors located on the plasma membrane are crucial for the attachment to or pathogen internalization by host cells. Identifying host cell receptors is often difficult, and hence, the identity of many proteins that play important roles during host-pathogen interaction remains elusive. We developed a novel proximity labeling approach by decorating the opportunistic pathogen Staphylococcus aureus with ascorbate peroxidase 2. Upon addition of hydrogen peroxide, the peroxidase initiates proximity biotinylation of S. aureus host interaction partners, thereby enabling the identification of these proteins. Here, we demonstrate an endothelial cell surface interactome of 305 proteins, including novel S. aureus co-receptors such as neuronal adhesion molecule, protein tyrosine kinase PTK7, melanotransferrin, protein-tyrosine kinase MET, and CD109. Filtering the interactome for validated surface proteins resulted in a list of 89 protein candidates, 53% of which were described to interact with S. aureus or other pathogens. IMPORTANCE: Staphylococcus aureus is an opportunistic pathogen that enters host cells such as epithelial or endothelial cells. Intracellular pathogens have been observed in vivo and are thought to serve immune evasion, avoidance of antibiotic treatment, and chronicity of infection. Thus, it is important to understand the mechanisms by which the bacteria are internalized by host cells; however, screening for pathogen-host receptors is difficult. Here, we developed a novel proximity labeling approach, which enabled the identification of several previously unknown host receptors of S. aureus that are engaged during a rapid uptake pathway for the bacteria.
Identification of the Staphylococcus aureus endothelial cell surface interactome by proximity labeling.
通过邻近标记法鉴定金黄色葡萄球菌内皮细胞表面相互作用组
阅读:2
作者:Rühling Marcel, Schmelz Fabio, Kempf Alicia, Paprotka Kerstin, Fraunholz Martin J
| 期刊: | mBio | 影响因子: | 4.700 |
| 时间: | 2025 | 起止号: | 2025 May 14; 16(5):e0365424 |
| doi: | 10.1128/mbio.03654-24 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
