Correlation of fluorescence microscopy, electron microscopy, and NanoSIMS stable isotope imaging on a single tissue section

对单个组织切片进行荧光显微镜、电子显微镜和NanoSIMS稳定同位素成像的相关性分析

阅读:1
作者:Céline Loussert-Fonta ,Gaëlle Toullec ,Arun Aby Paraecattil ,Quentin Jeangros ,Thomas Krueger ,Stephane Escrig ,Anders Meibom

Abstract

Correlative light and electron microscopy allows localization of specific molecules at the ultrastructural level in biological tissue but does not provide information about metabolic turnover or the distribution of labile molecules, such as micronutrients. We present a method to directly correlate (immuno)fluorescent microscopy, (immuno)TEM imaging and NanoSIMS isotopic mapping of the same tissue section, with nanometer-scale spatial precision. The process involves chemical fixation of the tissue, cryo sectioning, thawing, and air-drying under a thin film of polyvinyl alcohol. It permits to effectively retain labile compounds and strongly increases NanoSIMS sensitivity for 13C-enrichment. The method is illustrated here with correlated distribution maps of a carbonic anhydrase enzyme isotype, β-tubulin proteins, and 13C- and 15N-labeled labile micronutrients (and their anabolic derivates) within the tissue of a reef-building symbiotic coral. This broadly applicable workflow expands the wealth of information that can be obtained from multi-modal, sub-cellular observation of biological tissue.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。