Ferroptosis is a mode of cell death that relies on iron metabolism and lipid peroxidation. Preclinical and clinical studies indicate that ferroptosis suppresses tumor growth, and dysregulation of ferroptosis promotes treatment resistance in cancer. Hypoxia is a universal feature of solid tumors that is particularly relevant to prostate cancer (PCa), which arises in the hypoxic peripheral zone of the organ. Hypoxia has been implicated in resistance to ferroptosis and other forms of cell death, but how hypoxia impacts the sensitivity of PCa to ferroptosis inducing agents (FINs) has not been well studied. Here, we show that hypoxia dramatically reduces the sensitivity of PCa cell lines to mechanistically distinct FINs, Erastin (xCT inhibitor) and RLS3 (GPX4 inhibitor) by inducing lipid droplet (LD) accumulation. Transcriptomic analysis revealed that hypoxia significantly reduced the expression of genes related to incorporating polyunsaturated fatty acids into phospholipids (ACSL4, LPCAT3), and parallel lipidomic analysis demonstrated that hypoxia significantly decreased the levels of the ferroptosis-prone lipid class, phosphatidylethanolamine (PE) and increased production of neutral lipid species, cholesteryl ester (ChE (22:5)) and triglycerides (TG(48:1), TG:(50:4), and TG(58:4)). Targeting LD biogenesis and de novo lipogenesis did not alter sensitivity to RSL3 under hypoxia. These findings suggest that hypoxia promotes ferroptosis resistance in PCa by altering lipid metabolism at the transcriptional level, by producing lipids that are less susceptible to peroxidation, and at the cellular level, by increasing storage in LDs. Thus, manipulating LD dynamics represents a promising strategy to overcome hypoxia-induced resistance to ferroptosis and improve the success of PCa treatment.
Hypoxia induced lipid droplet accumulation promotes resistance to ferroptosis in prostate cancer.
缺氧诱导的脂滴积累促进前列腺癌细胞对铁死亡的抵抗
阅读:23
作者:Chauhan Shailender S, Vizzerra Andres D, Liou Hope, Flores Caitlyn E, Snider Ashley J, Snider Justin M, Warfel Noel A
| 期刊: | Oncotarget | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Jun 25; 16:532-544 |
| doi: | 10.18632/oncotarget.28750 | 研究方向: | 细胞生物学 |
| 疾病类型: | 前列腺癌 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
