Fine mapping of heterozygous IL6ST nonsense variants underlying autosomal dominant hyper-IgE syndrome.

精细定位导致常染色体显性高IgE综合征的杂合IL6ST无义变异

阅读:4
作者:Ashihara Kosuke, Asano Takaki, Takeuchi Kanako, Noma Kosuke, Tsumura Miyuki, Wang Wenjie, Lei Wei-Te, Higo Hisao, Kubo Toshio, Mizoguchi Yoko, Karakawa Shuhei, Cobat Aurélie, Conil Clément, Toyofuku Etsushi, Sekine Akimasa, Imai Kohsuke, Bogunovic Dusan, Casanova Jean-Laurent, Ku Cheng-Lung, Béziat Vivien, Okada Satoshi
Loss-of-function (LOF) variants in IL6ST, encoding GP130, can cause hyper-IgE syndrome (HIES). Monoallelic LOF variants in IL6ST lead to HIES when located in the intracellular domain downstream of box 1/2 and upstream of the STAT3 phosphorylation sites and the recycling motif, due to their dominant negative (DN) activity. In this region, 2 previously unreported IL6ST variants, p.K702Sfs7* and p.Y759Wfs26*, were identified in 2 families with autosomal dominant (AD) HIES. Both variants were LOF and exhibited DN effects, leading to the accumulation of mutant GP130 on the cell surface. The p.K702Sfs7* mutation was the most upstream N-terminal mutation linked to HIES caused by heterozygous IL6ST variants. Comprehensive screening of IL6ST mutants revealed that most premature terminations downstream of amino acid F641, at the end of the transmembrane domain, resulted in LOF and DN effects via GP130 accumulation on the cell surface. The absence of the recycling motif (positions 782-787) in surface-expressed LOF GP130 led to its accumulation, contributing to the DN effect. The importance of intracellular truncating IL6ST variants can possibly be predicted based on the location of the premature stop codon. GP130 accumulation on the cell surface is a characteristic and potentially diagnostic finding in patients with HIES with heterozygous IL6ST variants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。