Microglial involvement in neuroplastic changes following focal brain ischemia in rats.

小胶质细胞参与大鼠局灶性脑缺血后的神经可塑性变化

阅读:4
作者:Madinier Alexandre, Bertrand Nathalie, Mossiat Claude, Prigent-Tessier Anne, Beley Alain, Marie Christine, Garnier Philippe
The pathogenesis of ischemic stroke is a complex sequence of events including inflammatory reaction, for which the microglia appears to be a major cellular contributor. However, whether post-ischemic activation of microglial cells has beneficial or detrimental effects remains to be elucidated, in particular on long term brain plasticity events. The objective of our study was to determine, through modulation of post-stroke inflammatory response, to what extent microglial cells are involved in some specific events of neuronal plasticity, neurite outgrowth and synaptogenesis. Since microglia is a source of neurotrophic factors, the identification of the brain-derived neurophic factor (BDNF) as possible molecular actor involved in these events was also attempted. As a means of down-regulating the microglial response induced by ischemia, 3-aminobenzamide (3-AB, 90 mg/kg, i.p.) was used to inhibit the poly(ADP-ribose) polymerase-1 (PARP-1). Indeed, PARP-1 contributes to the activation of the transcription factor NF-kB, which is essential to the upregulation of proinflammatory genes, in particular responsible for microglial activation/proliferation. Experiments were conducted in rats subjected to photothrombotic ischemia which leads to a strong and early microglial cells activation/proliferation followed by an infiltration of macrophages within the cortical lesion, events evaluated at serial time points up to 1 month post-ictus by immunostaining for OX-42 and ED-1. Our most striking finding was that the decrease in acute microglial activation induced by 3-AB was associated with a long term down-regulation of two neuronal plasticity proteins expression, synaptophysin (marker of synaptogenesis) and GAP-43 (marker of neuritogenesis) as well as to a significant decrease in tissue BDNF production. Thus, our data argue in favour of a supportive role for microglia in brain neuroplasticity stimulation possibly through BDNF production, suggesting that a targeted protection of microglial cells could represent an innovative approach to potentiate post-stroke neuroregeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。