Passive exercise of the hind limbs after complete thoracic transection of the spinal cord promotes cortical reorganization.

脊髓胸段完全横断后,后肢被动运动可促进皮质重组

阅读:4
作者:Graziano Alessandro, Foffani Guglielmo, Knudsen Eric B, Shumsky Jed, Moxon Karen A
Physical exercise promotes neural plasticity in the brain of healthy subjects and modulates pathophysiological neural plasticity after sensorimotor loss, but the mechanisms of this action are not fully understood. After spinal cord injury, cortical reorganization can be maximized by exercising the non-affected body or the residual functions of the affected body. However, exercise per se also produces systemic changes - such as increased cardiovascular fitness, improved circulation and neuroendocrine changes - that have a great impact on brain function and plasticity. It is therefore possible that passive exercise therapies typically applied below the level of the lesion in patients with spinal cord injury could put the brain in a more plastic state and promote cortical reorganization. To directly test this hypothesis, we applied passive hindlimb bike exercise after complete thoracic transection of the spinal cord in adult rats. Using western blot analysis, we found that the level of proteins associated with plasticity - specifically ADCY1 and BDNF - increased in the somatosensory cortex of transected animals that received passive bike exercise compared to transected animals that received sham exercise. Using electrophysiological techniques, we then verified that neurons in the deafferented hindlimb cortex increased their responsiveness to tactile stimuli delivered to the forelimb in transected animals that received passive bike exercise compared to transected animals that received sham exercise. Passive exercise below the level of the lesion, therefore, promotes cortical reorganization after spinal cord injury, uncovering a brain-body interaction that does not rely on intact sensorimotor pathways connecting the exercised body parts and the brain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。