The Mbd4 DNA glycosylase protects mice from inflammation-driven colon cancer and tissue injury.

Mbd4 DNA糖基化酶可保护小鼠免受炎症引起的结肠癌和组织损伤

阅读:5
作者:Yu Amy Marie, Calvo Jennifer A, Muthupalani Suresh, Samson Leona D
Much of the global cancer burden is associated with longstanding inflammation accompanied by release of DNA-damaging reactive oxygen and nitrogen species. Here, we report that the Mbd4 DNA glycosylase is protective in the azoxymethane/dextran sodium sulfate (AOM/DSS) mouse model of inflammation-driven colon cancer. Mbd4 excises T and U from T:G and U:G mismatches caused by deamination of 5-methylcytosine and cytosine. Since the rate of deamination is higher in inflamed tissues, we investigated the role of Mbd4 in inflammation-driven tumorigenesis. In the AOM/DSS assay, Mbd4-/- mice displayed more severe clinical symptoms, decreased survival, and a greater tumor burden than wild-type (WT) controls. The increased tumor burden in Mbd4-/- mice did not arise from impairment of AOM-induced apoptosis in the intestinal crypt. Histopathological analysis indicated that the colonic epithelium of Mbd4-/- mice is more vulnerable than WT to DSS-induced tissue damage. We investigated the role of the Mbd4-/- immune system in AOM/DSS-mediated carcinogenesis by repeating the assay on WT and Mbd4-/- mice transplanted with WT bone marrow. Mbd4-/- mice with WT bone marrow behaved similarly to Mbd4-/- mice. Together, our results indicate that the colonic epithelium of Mbd4-/- mice is more vulnerable to DSS-induced injury, which exacerbates inflammation-driven tissue injury and cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。