Low cardiorespiratory fitness (CRF) is a well-established risk factor for cardiovascular disease (CVD) and all-cause mortality. Since CRF is largely genetically determined, understanding the genetic influences on CRF might reveal the protective mechanisms of high CRF. One gene found to be associated with CRF is COX7A2L. COX7A2L is a mitochondrial supercomplex assembly factor, but its role in cellular metabolism remains a topic of discussion. We hypothesized that COX7A2L could play a role in cellular respiration in cardiomyocytes, affecting cardiac function and CRF. To determine the effect of COX7A2L on cardiomyocyte function, we overexpressed and knocked down COX7A2L in human AC16 cardiomyocytes and performed MTT assays and Seahorse XF Cell Mito Stress Tests to assess cell viability and mitochondrial function. For the mitochondrial function measurements, we stimulated the cells with isoproterenol to investigate if the effect of altering COX7A2L levels would be larger under simulated increased energy demand. Overexpression and knockdown were validated using sandwich ELISA. Our findings showed that altering COX7A2L expression in human AC16 cardiomyocytes did not significantly affect cell viability or mitochondrial function. Further research is necessary to determine whether COX7A2L influences cardiomyocyte function and CRF.
Investigating the cardiorespiratory fitness gene COX7A2L in cardiomyocytes: Viability and mitochondrial function
研究心肌细胞中心肺功能基因COX7A2L:细胞活力和线粒体功能
阅读:2
作者:Ada Nilsen Nordeidet ,Gurdeep S A Marwarha ,Øystein Røsand ,Victoria Johansen ,Karin Garten ,Morten A Høydal ,Mette Langaas ,Anja Bye
| 期刊: | PLoS One | 影响因子: | 2.900 |
| 时间: | 2025 | 起止号: | 2025 Jun 25;20(6):e0326249. |
| doi: | 10.1371/journal.pone.0326249 | 研究方向: | 细胞生物学 |
| 疾病类型: | 心肌炎 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
