Putrescine stimulates the mTOR signaling pathway and protein synthesis in porcine trophectoderm cells

腐胺刺激猪滋养外胚层细胞中的 mTOR 信号通路和蛋白质合成

阅读:4
作者:Xiangfeng Kong, Xiaoqiu Wang, Yulong Yin, Xilong Li, Haijun Gao, Fuller W Bazer, Guoyao Wu

Abstract

Insufficient placental growth is a major factor contributing to intrauterine growth retardation in mammals. There is growing evidence that putrescine produced from arginine (Arg) and proline via ornithine decarboxylase is a key regulator of angiogenesis, embryogenesis, as well as placental and fetal growth. However, the underlying mechanisms are largely unknown. The present study tested the hypothesis that putrescine stimulates protein synthesis by activating the mechanistic target of rapamycin (mTOR) signaling pathway in porcine trophectoderm cell line 2 cells. The cells were cultured for 2 to 4 days in customized Arg-free Dulbecco modified Eagle Ham medium containing 0, 10, 25, or 50 μM putrescine or 100 μM Arg. Cell proliferation, protein synthesis, and degradation, as well as the abundance of total and phosphorylated mTOR, ribosomal protein S6 kinase 1, and eukaryotic initiation factor 4E-binding protein-1 (4EBP1), were determined. Our results indicate that putrescine promotes cell proliferation and protein synthesis in a dose- and time-dependent manner, which was inhibited by difluoro-methylornithine (an inhibitor of ornithine decarboxylase). Moreover, supplementation of culture medium with putrescine increased the abundance of phosphorylated mTOR and its downstream targets, 4EBP1 and p70 S6K1 proteins. Collectively, these findings reveal a novel and important role for putrescine in regulating the mTOR signaling pathway in porcine placental cells. We suggest that dietary supplementation with or intravenous administration of putrescine may provide a new and effective strategy to improve survival and growth of embryos/fetuses in mammals.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。