BACKGROUND: Optical silencing of activity provides a way to test the necessity of neurons in behaviour. Two light-gated anion channels, GtACR1 and GtACR2, have recently been shown to potently inhibit activity in cultured mammalian neurons and in Drosophila. Here, we test the usefulness of these channels in larval zebrafish, using spontaneous coiling behaviour as the assay. RESULTS: When the GtACRs were expressed in spinal neurons of embryonic zebrafish and actuated with blue or green light, spontaneous movement was inhibited. In GtACR1-expressing fish, only 3 μW/mm(2) of light was sufficient to have an effect; GtACR2, which is poorly trafficked, required slightly stronger illumination. No inhibition was seen in non-expressing siblings. After light offset, the movement of GtACR-expressing fish increased, which suggested that termination of light-induced neural inhibition may lead to activation. Consistent with this, two-photon imaging of spinal neurons showed that blue light inhibited spontaneous activity in spinal neurons of GtACR1-expressing fish, and that the level of intracellular calcium increased following light offset. CONCLUSIONS: These results show that GtACR1 and GtACR2 can be used to optically inhibit neurons in larval zebrafish with high efficiency. The activity elicited at light offset needs to be taken into consideration in experimental design, although this property can provide insight into the effects of transiently stimulating a circuit.
Optical inhibition of larval zebrafish behaviour with anion channelrhodopsins.
利用阴离子通道视紫红质对斑马鱼幼体行为进行光学抑制
阅读:5
作者:Mohamed Gadisti Aisha, Cheng Ruey-Kuang, Ho Joses, Krishnan Seetha, Mohammad Farhan, Claridge-Chang Adam, Jesuthasan Suresh
| 期刊: | BMC Biology | 影响因子: | 4.500 |
| 时间: | 2017 | 起止号: | 2017 Nov 3; 15(1):103 |
| doi: | 10.1186/s12915-017-0430-2 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
