Durum semolina spaghetti is known to have a low-moderate glycaemic index but the impact of various processing variables during the manufacture and cooking of pasta does affect pasta structure and potentially could alter starch digestion. In this study, several process variables were investigated to see if they can impact the in vitro starch digestion in spaghetti while also monitoring the pastaâs technological quality. Cooking time had a large impact on pasta starch digestion and reducing cooking from fully cooked to al dente and using pasta of very high protein content (17%), reduced starch digestion extent. The semolina particle size distribution used to prepare pasta impacted pasta quality and starch digestion to a small extent indicating a finer semolina particle size (<180 µm) may promote a more compact structure and help to reduce starch digestion. The addition of a structural enzyme, Transglutaminase in the pasta formulae improved overcooking tolerance in low protein pasta comparable to high protein pasta with no other significant effects and had no effect on starch digestion over a wide protein range (8.6â17%). While cold storage of cooked pasta was expected to increase retrograded starch, the increase in resistant starch was minor (37%) with no consequent improvement in the extent of starch digestion. Varying three extrusion parameters (die temperature, die pressure, extrusion speed) impacted pasta technological quality but not the extent of starch digestion. Results suggest the potential to subtly manipulate the starch digestion of pasta through some processing procedures.
Influence of Some Spaghetti Processing Variables on Technological Attributes and the In Vitro Digestion of Starch.
意大利面加工中某些变量对工艺特性和淀粉体外消化的影响
阅读:6
作者:Sissons Mike, Cutillo Silvia, Egan Narelle, Farahnaky Asgar, Gadaleta Agata
| 期刊: | Foods | 影响因子: | 5.100 |
| 时间: | 2022 | 起止号: | 2022 Nov 15; 11(22):3650 |
| doi: | 10.3390/foods11223650 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
