Impaired Endothelium-Dependent Vasodilation and Increased Levels of Soluble Fms-like Tyrosine Kinase-1 Induced by Reduced Uterine Perfusion Pressure in Pregnant Rats: Evidence of Protective Effects with Sodium Nitrite Treatment in Preeclampsia.

妊娠大鼠子宫灌注压降低导致内皮依赖性血管舒张受损和可溶性 Fms 样酪氨酸激酶-1 水平升高:亚硝酸钠治疗对先兆子痫具有保护作用的证据

阅读:5
作者:Da Silva Maria Luiza Santos, Gomes Sáskia Estela Biasotti, Martins Laisla Zanetoni, Rodrigues Serginara David, Toghi Cristal de Jesus, Dias-Junior Carlos Alan
Preeclampsia (PE) is a hypertensive disorder of pregnancy and is associated with increases in soluble fms-like tyrosine kinase-1 (sFlt-1) and reductions in nitric oxide (NO) levels. Placental ischemia and hypoxia are hypothesized as initial pathophysiological events of PE. Nitrite (NO metabolite) may be recycled back to NO in ischemic and hypoxic tissues. Therefore, this study examined the sodium nitrite effects in an experimental model of PE. Pregnant rats received saline (Preg group) or sodium nitrite (Preg + Na-Nitrite group). Pregnant rats submitted to the placental ischemia received saline (RUPP group) or sodium nitrite (RUPP + Na-Nitrite group). Blood pressure, placental and fetal weights, and the number of pups were recorded. Plasma levels of NO metabolites and sFlt-1 were also determined. Vascular and endothelial functions were also measured. Blood pressure, placental and fetal weights, the number of pups, NO metabolites, sFlt-1 levels, vascular contraction, and endothelium-dependent vasodilation in the RUPP + Na-Nitrite rats were brought to levels comparable to those in Preg rats. In conclusion, sodium nitrite may counteract the reductions in NO and increases in sFlt-1 levels induced by the placental ischemia model of PE, thus suggesting that increased blood pressure and vascular and endothelial dysfunctions may be attenuated by sodium nitrite-derived NO.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。