Transfer RNA-derived fragment tRF-36 modulates varicose vein progression via human vascular smooth muscle cell Notch signaling.

转移 RNA 衍生片段 tRF-36 通过人类血管平滑肌细胞 Notch 信号传导调节静脉曲张的进展

阅读:7
作者:Chen Guojun, Yu Chong, Shi Yu, Cai Danna, Zhou Bin
Varicose veins are a prevalent vascular disorder affecting millions of individuals worldwide, and we previously reported transfer RNA-derived fragment (tRF) involvement in varicose veins. This study investigated the role of tRF-36 in varicose vein pathogenesis. Varicose veins and adjacent normal vascular tissues were collected to measure the expression of Notch 1, 2, and 3 and the smooth muscle cell (SMC) markers SMA-α, and SM22α. Human vascular SMCs (HVSMCs) were transfected to alter tRF-36 levels and examine the effects on Notch 1-3, tRF-36, SMA-α, and SM22α expression. Notch 1-3 and tRF-36 levels were higher in varicose veins than in adjacent normal vascular tissues. tRF-36 knockdown decreased HVSMC viability, downregulated Notch 1, 2, and 3 expression, and upregulated SMC markers (SMA-α and SM22α) compared with control HVSMCs. When the Notch pathway was inhibited, the expression of tRF-36 was significantly reduced. Additionally, Notch pathway inhibition showed similar effects to tRF-36 knockdown on HVSMC viability and the expression of SMA-α and SM22α. Furthermore, a Notch pathway inhibitor reversed the effects of the tRF-36 mimic on HVSMCs. Our study suggests a critical role for tRF-36 in varicose veins and demonstrates that tRF-36 knockdown may suppress varicose vein progression by inhibiting the Notch signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。